In MCUNetV3, we enable on-device training under 256KB memory, using less than 1/1000 memory of PyTorch while matching the accuracy on the visual wake words application using system-algorithm co-design.
NetAug is a training technique for tiny neural networks. NetAug embeds the tiny neural networks into larger neural networks as a sub-network to get more guidance during training. NetAug consistently improves the performance of tiny models, achieving up to 2.2% accuracy improvement on ImageNet.
We propose Delayed Gradient Averaging (DGA), which delays the averaging step to improve efficiency and allows local computation in parallel to communication.
Differentiable augmentation to improve the data efficiency of GAN training.
Tiny-Transfer-Learning (TinyTL) provides memory-efficient on-device learning by freezing the weights while only learns the bias modules to get rid of the intermediate activations, and introducing the lite residual module to maintain the adaptation capacity.
Deep Gradient Compression (DGC) reduces the communication bandwidth in the large-scale distributed training via four techniques: momentum correction, local gradient clipping, momentum factor masking, and warm-up training.
In MCUNetV3, we enable on-device training under 256KB SRAM and 1MB Flash, using less than 1/1000 memory of PyTorch while matching the accuracy on the visual wake words application. It enables the model to adapt to newly collected sensor data and users can enjoy customized services without uploading the data to the cloud thus protecting privacy.