Automatic transistor sizing is a challenging problem in circuit design due to the large design space, complex performance tradeoffs, and fast technology advancements. Although there have been plenty of work on transistor sizing targeting on one circuit, limited research has been done on transferring the knowledge from one circuit to another to reduce the re-design overhead. In this paper, we present GCN-RL Circuit Designer, leveraging reinforcement learning (RL) to transfer the knowledge between different technology nodes and topologies. Moreover, inspired by the simple fact that circuit is a graph, we learn on the circuit topology representation with graph convolutional neural networks (GCN). The GCN-RL agent extracts features of the topology graph whose vertices are transistors, edges are wires. Our learning-based optimization consistently achieves the highest Figures of Merit (FoM) on four different circuits compared with conventional black box optimization methods (Bayesian Optimization, Evolutionary Algorithms), random search and human expert designs. Experiments on transfer learning between five technology nodes and two circuit topologies demonstrate that RL with transfer learning can achieve much higher FoMs than methods without knowledge transfer. Our transferable optimization method makes transistor sizing and design porting more effective and efficient.
We develop a graph neural network and reinforcement learning based method for analog circuit transistor sizing.
Machine learning on tiny IoT devices based on microcontroller units (MCUs) is appealing but challenging: the memory of microcontrollers is 2-3 orders of magnitude smaller than mobile phones. We propose MCUNet, a framework that jointly designs the efficient neural architecture (TinyNAS) and the lightweight inference engine (TinyEngine), enabling ImageNet-scale inference on microcontrollers.TinyNAS adopts a two-stage neural architecture search approach that first optimizes the search space to fit the resource constraints, then specializes the network architecture in the optimized search space. TinyNAS can automatically handle diverse constraints (i.e. device, latency, energy, memory) under low search costs. TinyNAS is co-designed with TinyEngine, a memory-efficient inference library to expand the search space and fit a larger model. TinyEngine adapts the memory scheduling according to the overall network topology rather than layer-wise optimization, reducing the memory usage by 3.4x, and accelerating the inference by 1.7-3.3x compared to TF-Lite Micro and CMSIS-NN. MCUNet is the first to achieve>70% ImageNet top1 accuracy on an off-the-shelf commercial microcontroller, using 3.5x less SRAM and 5.7x less Flash compared to quantized MobileNetV2 and ResNet-18. On visual and audio wake words tasks, MCUNet achieves state-of-the-art accuracy and runs 2.4-3.4x faster than MobileNetV2 and ProxylessNAS-based solutions with 3.7-4.1x smaller peak SRAM. Our study suggests that the era of always-on tiny machine learning on IoT devices has arrived.
MCUNet is a system-algorithm co-design framework for tiny deep learning on microcontrollers. It consists of TinyNAS and TinyEngine. They are co-designed to fit the tight memory budgets. With system-algorithm co-design, we can significantly improve the deep learning performance on the same tiny memory budget.
We present APQ for efficient deep learning inference on resource-constrained hardware. Unlike previous methods that separately search the neural architecture, pruning policy, and quantization policy, we optimize them in a joint manner. To deal with the larger design space it brings, a promising approach is to train a quantization-aware accuracy predictor to quickly get the accuracy of the quantized model and feed it to the search engine to select the best fit. However, training this quantization-aware accuracy predictor requires collecting a large number of quantized <model, accuracy> pairs, which involves quantization-aware finetuning and thus is highly time-consuming. To tackle this challenge, we propose to transfer the knowledge from a full-precision (i.e., fp32) accuracy predictor to the quantization-aware (i.e., int8) accuracy predictor, which greatly improves the sample efficiency. Besides, collecting the dataset for the fp32 accuracy predictor only requires to evaluate neural networks without any training cost by sampling from a pretrained once-for-all network, which is highly efficient. Extensive experiments on ImageNet demonstrate the benefits of our joint optimization approach. With the same accuracy, APQ reduces the latency/energy by 2x/1.3x over MobileNetV2+HAQ. Compared to the separate optimization approach (ProxylessNAS+AMC+HAQ), APQ achieves 2.3% higher ImageNet accuracy while reducing orders of magnitude GPU hours and CO2 emission, pushing the frontier for green AI that is environmental-friendly. The code and video are publicly available.
APQ is an efficient AutoML framework for joint optimization of neural architecture, pruning, and quantization.
Conditional Generative Adversarial Networks (cGANs) have enabled controllable image synthesis for many computer vision and graphics applications. However, recent cGANs are 1-2 orders of magnitude more computationally-intensive than modern recognition CNNs. For example, GauGAN consumes 281G MACs per image, compared to 0.44G MACs for MobileNet-v3, making it difficult for interactive deployment. In this work, we propose a general-purpose compression framework for reducing the inference time and model size of the generator in cGANs. Directly applying existing CNNs compression methods yields poor performance due to the difficulty of GAN training and the differences in generator architectures. We address these challenges in two ways. First, to stabilize the GAN training, we transfer knowledge of multiple intermediate representations of the original model to its compressed model, and unify unpaired and paired learning. Second, instead of reusing existing CNN designs, our method automatically finds efficient architectures via neural architecture search (NAS). To accelerate the search process, we decouple the model training and architecture search via weight sharing. Experiments demonstrate the effectiveness of our method across different supervision settings (paired and unpaired), model architectures, and learning methods (e.g., pix2pix, GauGAN, CycleGAN). Without losing image quality, we reduce the computation of CycleGAN by more than 20× and GauGAN by 9×, paving the way for interactive image synthesis.
A general-purpose compression framework for reducing the inference time and model size of the generator in conditional GANs.