Analog IC design relies on human experts to search for parameters that satisfy circuit specifications with their experience and intuitions, which is highly labor intensive, time consuming and suboptimal. Machine learning is a promising tool to automate this process. However, supervised learning is difficult for this task due to the low availability of training data: 1) Circuit simulation is slow, thus generating large-scale dataset is time-consuming; 2) Most circuit designs are propitiatory IPs within individual IC companies, making it expensive to collect large-scale datasets. We propose Learning to Design Circuits (L2DC) to leverage reinforcement learning that learns to efficiently generate new circuits data and to optimize circuits. We fix the schematic, and optimize the parameters of the transistors automatically by training an RL agent with no prior knowledge about optimizing circuits. After iteratively getting observations, generating a new set of transistor parameters, getting a reward, and adjusting the model, L2DC is able to optimize circuits. We evaluate L2DC on two transimpedance amplifiers. Trained for a day, our RL agent can achieve comparable or better performance than human experts trained for a quarter. It first learns to meet hard-constraints (eg. gain, bandwidth), and then learns to optimize good-to-have targets (eg. area, power). Compared with grid search-aided human design, L2DC can achieve higher sample efficiency with comparable performance. Under the same runtime constraint, the performance of L2DC is also better than Bayesian Optimization.
We develop a reinforcement learning framework for analog circuit design.
Model compression is a critical technique to efficiently deploy neural network models on mobile devices which have limited computation resources and tight power budgets. Conventional model compression techniques rely on hand-crafted heuristics and rule-based policies that require domain experts to explore the large design space trading off among model size, speed, and accuracy, which is usually sub-optimal and time-consuming. In this paper, we propose AutoML for Model Compression (AMC) which leverage reinforcement learning to provide the model compression policy. This learning-based compression policy outperforms conventional rule-based compression policy by having higher compression ratio, better preserving the accuracy and freeing human labor. Under 4x FLOPs reduction, we achieved 2.7% better accuracy than the hand-crafted model compression policy for VGG-16 on ImageNet. We applied this automated, push-the-button compression pipeline to MobileNet and achieved 1.81x speedup of measured inference latency on an Android phone and 1.43x speedup on the Titan XP GPU, with only 0.1% loss of ImageNet Top-1 accuracy.
AutoML for Model Compression (AMC) leverages reinforcement learning to provide the model compression policy. This learning-based compression policy outperforms conventional rule-based compression policy by having higher compression ratio, better preserving the accuracy and freeing human labor.
State-of-the-art deep neural networks (DNNs) have hundreds of millions of connections and are both computationally and memory intensive, making them difficult to deploy on embedded systems with limited hardware resources and power budgets. While custom hardware helps the computation, fetching weights from DRAM is two orders of magnitude more expensive than ALU operations, and dominates the required power. Previously proposed 'Deep Compression' makes it possible to fit large DNNs (AlexNet and VGGNet) fully in on-chip SRAM. This compression is achieved by pruning the redundant connections and having multiple connections share the same weight. We propose an energy efficient inference engine (EIE) that performs inference on this compressed network model and accelerates the resulting sparse matrix-vector multiplication with weight sharing. Going from DRAM to SRAM gives EIE 120× energy saving; Exploiting sparsity saves 10×; Weight sharing gives 8×; Skipping zero activations from ReLU saves another 3×. Evaluated on nine DNN benchmarks, EIE is 189× and 13× faster when compared to CPU and GPU implementations of the same DNN without compression. EIE has a processing power of 102 GOPS working directly on a compressed network, corresponding to 3 TOPS on an uncompressed network, and processes FC layers of AlexNet at 1.88×104 frames/sec with a power dissipation of only 600mW. It is 24,000× and 3,400× more energy efficient than a CPU and GPU respectively. Compared with DaDianNao, EIE has 2.9×, 19× and 3× better throughput, energy efficiency and area efficiency.
We propose an energy efficient inference engine (EIE) that performs inference on this compressed network model and accelerates the resulting sparse matrix-vector multiplication with weight sharing.
Neural networks are both computationally intensive and memory intensive, making them difficult to deploy on embedded systems with limited hardware resources. To address this limitation, we introduce “deep compression”, a three stage pipeline: pruning, trained quantization and Huffman coding, that work together to reduce the storage requirement of neural networks by 35× to 49× without affecting their accuracy. Our method first prunes the network by learning only the important connections. Next, we quantize the weights to enforce weight sharing, finally, we apply Huffman coding. After the first two steps we retrain the network to fine tune the remaining connections and the quantized centroids. Pruning, reduces the number of connections by 9× to 13×; Quantization then reduces the number of bits that represent each connection from 32 to 5. On the ImageNet dataset, our method reduced the storage required by AlexNet by 35×, from 240MB to 6.9MB, without loss of accuracy. Our method reduced the size of VGG-16 by 49× from 552MB to 11.3MB, again with no loss of accuracy. This allows fitting the model into on-chip SRAM cache rather than off-chip DRAM memory. Our compression method also facilitates the use of complex neural networks in mobile applications where application size and download bandwidth are constrained. Benchmarked on CPU, GPU and mobile GPU, compressed network has 3× to 4× layerwise speedup and 3× to 7× better energy efficiency.
We introduce “deep compression”, a three stage pipeline: pruning, trained quantization and Huffman coding, that work together to reduce the storage requirement of neural networks by 35× to 49× without affecting their accuracy.