Delayed Gradient Averaging: Tolerate the Communication Latency for Federated Learning

Ligeng Zhu, Hongzhou Lin, Yao Lu*, Yujun Lin, Song Han

Massachusetts Institute of Technology, Google*
Federated Learning Allows Training without Sharing

- **Security**: Data never leaves devices thus promises security and regularization.

- **Customization**: Models continually adapt to new data from the sensors.
There is huge gap between the network connection of conventional distributed training and federated learning.
Network Bottleneck in Federated Learning

- Bandwidth can be always improved by
 - Hardware upgrade
 - Gradient compression[1] and quantization[2]

- Latency is hard to improve because
 - Physical limits: Shanghai to Boston, even considering the speed of light, still takes 162ms.
 - Signal congestion: Urban office and home creates a lot of signal contention.

[1] Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training
[2] 1-Bit Stochastic Gradient Descent and Application to Data-Parallel Distributed Training of Speech DNNs
High Latency Slows Federated Learning

Within a Rack

Normalized Throughput

Higher training speed

Higher Latency

Network latency

Normalized Throughput

1us 1ms 10ms 100ms 500ms 1s
High Latency Slows Federated Learning

Within a Rack
Within a Data Center

Normalized Throughput

Network latency

0.00
0.25
0.50
0.75
1.00

Higher training speed

Higher latency

In cluster network latency does not affect training
High Latency Slows Federated Learning

Within a Rack	Same Data Center	Wireless
1us | 1ms | 10ms
100ms | 500ms | 1s

Normalized Throughput

Network latency

Higher training speed

In home wireless connection slows the training by certain margin.
High Latency Slows Federated Learning

Long-distance connection slows the training by a large margin.
Can existing distributed optimizations handle high latency?

NO
Conventional Algorithms Suffer from High Latency

Distributed Synchronous SGD

1. Sample and calculate $\nabla w_{(i,j)}$
2. Send $\nabla w_{(i,j)}$ to other nodes
3. Recv $\nabla w_{(i,j)}$ from other nodes
4. $\overline{\nabla w_{(i)}} = \frac{1}{J} \sum_{j=1}^{J} \nabla w_{(i,j)}$
5. $w_{(i,j)} = w_{(i,j)} - \eta \overline{\nabla w_{(i)}}$

Latency increases

Local updates and communication are performed sequentially. Worker **has to wait the transmission finish** before next step.

i: iteration, j: work index, x: training data, w: model weights
Conventional Algorithms Suffer from High Latency

Federated Averaging [McMahan 16]

1. Sample and calculate $\nabla w_{(i,j)}$
2. If $i \mod K$:
 1. Send $\nabla w_{(i,j)}$ to other nodes
 2.Recv $\nabla w_{(i,j)}$ from other nodes
3. $G_i = \frac{1}{J} \sum_{j=1}^{J} \nabla w_{(i,j)}$
3. Else
1. $G_i = \nabla w_{(i,j)}$
4. $w_{(i,j)} = w_{(i,j)} - \eta G_i$

Increase K (K=2 in the example) can **amortize the effect**, but the training still **slows when latency is high**.

- **Computation**
- **Communication**

i: iteration, j: work index, x: training data, w: model weights
Conventional Algorithms Suffer from High Latency

Federated Averaging [McMahan 16]

1. \(\nabla w_{(i,j)} = \frac{\partial F(x_{(i,j)}, y_{(i,j)}; w)}{\partial w} \)
2. If \(i \mod K \):
 1. Send \(\nabla w_{(i,j)} \) to others
3. \(G_i = \frac{1}{J} \sum_{j=1}^{J} \nabla w_{(i,j)} \)
3. Else
 1. \(G_i = \nabla w_{(i,j)} \)
4. \(w_{(i,j)} = w_{(i,j)} - \eta G_i \)

How to improve training throughput under high latency?

Pipeline computation and communication!

Increase \(K \) can amortize the effect, but still, the training suffers from high latency.
Delayed Gradient Averaging

Delay Gradient Averaging [Ours]

1. Sample and calculate $\nabla w(i, j)$
2. If $i \bmod K == 0$
 1. Send fresh $\nabla w(i, j)$ to other nodes
3. If $i \bmod K == D$
 1. Delay the averaging to a later iteration.
 2. Send fresh $\nabla w(i, j)$ to other nodes
4. $w(i, j) = w(i, j) - \eta(\nabla w(i, j) - \nabla w(i-D, j) + \overline{\nabla w(i-D)})$

i: iteration, j: work index, x: training data, w: model weights
Delayed Gradient Averaging

Delay Gradient Averaging [Ours]

1. Sample and calculate $\nabla w_{(i,j)}$
2. If $i \mod K == 0$
 1. Send fresh $\nabla w_{(i,j)}$ to other nodes
3. If $i \mod K == D$
 1.Recv stale $\nabla w_{(i-D,j)}$ from other nodes
 2. $\nabla w_{(i-D)} = \frac{1}{J} \sum_{j=1}^{J} \nabla w_{(i-D,j)}$
4. $w_{(i,j)} = w_{(i,j)} - \eta (\nabla w_{(i,j)} - \nabla w_{(i-D,j)} + \nabla w_{(i-D)})$

W/o delay: all the local machines are blocked to wait for the synchronization to finish

With delay: Worker keep performing local updates while the parameters are in transmission.

i: iteration, j: work index, x: training data, w: model weights
Delayed Gradient Averaging

Delay Gradient Averaging [Ours]

1. Sample and calculate $\nabla w_{(i,j)}$
2. If $i \mod K == 0$
 1. Send fresh $\nabla w_{(i,j)}$ to other nodes
3. If $i \mod K == D$
 1.Recv stale $\nabla w_{(i-D,j)}$ from other nodes
 2. $\overline{\nabla w_{(i-D)}} = \frac{1}{j} \sum_{j=1}^{j} \nabla w_{(i-D,j)}$
4. $w_{(i,j)} = w_{(i,j)} - \eta (\nabla w_{(i,j)} - \nabla w_{(i-D,j)} + \overline{\nabla w_{(i-D)}})$

Communication is covered by computation.

As long as the transmission finishes within $D \times T_{\text{computation}}$ the training will not be blocked.

i: iteration, j: work index, x: training data, w: model weights
The Design of Correction Term

\[w_{(i,j)} = w_{(i,j)} - \eta (\nabla w_{(i,j)} - \nabla w_{(i-D,j)} + \nabla w_{(i-D)}) \]

Consider the 3rd iteration with \(D = 2 \)

\[w_{(3,j)} = w_{(1,j)} - \eta (\nabla w_{(1,j)} + \nabla w_{(2,j)} + \nabla w_{(3,j)}) \]

Local gradients
The Design of Correction Term

Current local gradients Stale local gradients Stale global gradients

\[w_{(i,j)} = w_{(i,j)} - \eta \left(\nabla w_{(i,j)} - \nabla w_{(i-D,j)} + \nabla w_{(i-D)} \right) \]

Consider the 3rd iteration with \(D = 2 \)

\[w_{(3,j)} = w_{(1,j)} - \eta \left(\nabla w_{(1,j)} + \nabla w_{(2,j)} + \nabla w_{(3,j)} \right) \]
The Design of Correction Term

Current local gradients

\[w_{(i,j)} = w_{(i,j)} - \eta(\nabla w_{(i,j)} - \nabla w_{(i-D,j)} + \nabla w_{(i-D)}) \]

Stale global gradients

Stale local gradients

Consider the 3rd iteration with \(D = 2 \)

\[w_{(3,j)} = w_{(1,j)} - \eta(\nabla w_{(1,j)} + \nabla w_{(2,j)} + \nabla w_{(3,j)}) \]

\[\nabla w_{(1)} \]
The Design of Correction Term

Current local gradients Stale global gradients

\[w_{(i,j)} = w_{(i,j)} - \eta (\nabla w_{(i,j)} - \nabla w_{(i-D,j)} + \nabla w_{(i-D)}) \]

Stale local gradients

Consider the **3rd iteration** with \(D = 2 \)

\[w_{(3,j)} = w_{(1,j)} - \eta (\nabla w_{(1)} + \nabla w_{(2,j)} + \nabla w_{(3,j)}) \]

Replacing oldest local gradients with global averaged ones!
The Design of Correction Term

Current local gradients

\[w_{(i,j)} = w_{(i,j)} - \eta (\nabla w_{(i,j)} - \nabla w_{(i-D,j)} + \nabla w_{(i-D)}) \]

Stale local gradients

Stale global gradients

Consider the 4th iteration with \(D = 2\)

\[w_{(3,j)} = w_{(1,j)} - \eta (\nabla w_{(1)} + \nabla w_{(2,j)} + \nabla w_{(3,j)}) \]

\[w_{(4,j)} = w_{(1,j)} - \eta (\nabla w_{(1)} + \nabla w_{(2,j)} + \nabla w_{(3,j)} + \nabla w_{(4,j)}) \]
The Design of Correction Term

\[w_{(i,j)} = w_{(i,j)} - \eta (\nabla w_{(i,j)} - \nabla w_{(i-D,j)} + \nabla w_{(i-D)}) \]

Consider the 4th iteration with \(D = 2 \)

\[w_{(3,j)} = w_{(1,j)} - \eta (\nabla w_{(1)} + \nabla w_{(2,j)} + \nabla w_{(3,j)}) \]

\[w_{(4,j)} = w_{(1,j)} - \eta (\nabla w_{(1)} + \nabla w_{(2,j)} + \nabla w_{(3,j)} + \nabla w_{(4,j)}) \]
The Design of Correction Term

Current local gradients
Stale global gradients

\[w_{(i,j)} = w_{(i,j)} - \eta (\nabla w_{(i,j)} - \nabla w_{(i-D,j)} + \nabla w_{(i-D)}) \]

Stale local gradients

Consider the \textbf{4th iteration} with \(D = 2 \)

\[w_{(3,j)} = w_{(1,j)} - \eta (\nabla w_{(1)} + \nabla w_{(2,j)} + \nabla w_{(3,j)}) \]

\[w_{(4,j)} = w_{(1,j)} - \eta (\nabla w_{(1)} + \nabla w_{(2)} + \nabla w_{(3,j)} + \nabla w_{(4,j)}) \]
The Design of Correction Term

Current local gradients

\[w_{(i,j)} = w_{(i,j)} - \eta (\nabla w_{(i,j)} - \nabla w_{(i-D,j)} + \nabla w_{(i-D)}) \]

Stale global gradients

Stale local gradients

\[w_{(3,j)} = w_{(1,j)} - \eta (\overline{\nabla w_{(1)}} + \nabla w_{(2,j)} + \nabla w_{(3,j)}) \]

\[w_{(4,j)} = w_{(1,j)} - \eta (\overline{\nabla w_{(1)}} + \overline{\nabla w_{(2)}} + \nabla w_{(3,j)} + \nabla w_{(4,j)}) \]

\[w_{(i,j)} = w_{(1,j)} - \eta (\overline{\nabla w_{(1)}} + \ldots + \overline{\nabla w_{(i-D,j)}} + \overline{\nabla w_{(i-D+1,j)}} + \ldots + \overline{\nabla w_{(i,j)}}) \]

Only most recent \(D \) updates are local gradients.
The Design of Correction Term

Our DGA:

\[
W_{(i,j)} = W_{(1,j)} - \eta(\nabla W_{(1)} + \ldots + \nabla W_{(i-D,j)} + \nabla W_{(i-D+1,j)} + \ldots + \nabla W_{(i,j)})
\]

Vanilla Distributed SGD:

\[
W_{(i,j)} = W_{(1,j)} - \eta(\nabla W_{(1)} + \ldots + \nabla W_{(i-D,j)} + \nabla W_{(i-D+1,j)} + \ldots + \nabla W_{(i,j)})
\]

Usual training consists of >10k iterations, such divergence is small.

The divergence is bounded.
DGA Guarantees the Convergence

• Assumption 1: the loss function $F(w; x, y)$ is **Lipchitz smooth**

$$\nabla f_j(x) - \nabla f_j(y) \leq L \| x - y \| . \quad \forall x, y \in \mathbb{R}^d$$

• Assumption 2: **Bounded gradients and variances**

$$\mathbb{E}_{\zeta_j} \| \nabla F_j(w; \zeta_i) \|^2 \leq G^2, \forall w, \forall j, \quad \mathbb{E}_{\zeta_j} \| \nabla F_j(w; \zeta_j) - \nabla f_j(w) \|^2 \leq \sigma^2, \forall w, \forall j.$$

The convergence rate of DGA is $O\left(\frac{\Delta + \sigma^2}{\sqrt{JN}} + \frac{Jd^2}{N}\right)$ (details in paper)

When $D < O(N^{\frac{1}{4}}J^{-\frac{3}{4}})$, **DGA converges as fast as original SGD** which is $O\left(\frac{\Delta + \sigma^2}{\sqrt{JN}}\right)$.

$(N$: iterations, J: number of machines)
DGA Improves the Accuracy

<table>
<thead>
<tr>
<th>Paritions</th>
<th>FedAvg(k=5)</th>
<th>FedAvg(k=10)</th>
<th>FedAvg(k=20)</th>
<th>DGA(K=5,D=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIFAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.I.D</td>
<td>88.7</td>
<td>88.5</td>
<td>88.1</td>
<td>88.6</td>
</tr>
<tr>
<td>Non-I.I.D</td>
<td>48.2</td>
<td>47.2</td>
<td>43.9</td>
<td>48.0</td>
</tr>
</tbody>
</table>

| | 1.0x | 1.51x | 2.05x | 3.16x |

DGA shows **negligible accuracy drop**.
DGA Improves the Accuracy

<table>
<thead>
<tr>
<th>Paritions</th>
<th>FedAvg(k=5)</th>
<th>FedAvg(k=10)</th>
<th>FedAvg(k=20)</th>
<th>DGA(K=5,D=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIFAR</td>
<td>88.7</td>
<td>88.5</td>
<td>88.1</td>
<td>88.6</td>
</tr>
<tr>
<td>I.I.D</td>
<td>1.0x</td>
<td>1.51x</td>
<td>2.05x</td>
<td>3.16x</td>
</tr>
<tr>
<td>Non-I.I.D</td>
<td>48.2</td>
<td>47.2</td>
<td>43.9</td>
<td>48.0</td>
</tr>
</tbody>
</table>

DGA shows **much better accuracy** on non I.I.D partitions.
DGA Improves the Accuracy

<table>
<thead>
<tr>
<th>Paritions</th>
<th>FedAvg(k=5)</th>
<th>FedAvg(k=10)</th>
<th>FedAvg(k=20)</th>
<th>DGA(K=5,D=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIFAR I.I.D</td>
<td>88.7</td>
<td>88.5</td>
<td>88.1</td>
<td>88.6</td>
</tr>
<tr>
<td></td>
<td>1.0x</td>
<td>1.51x</td>
<td>2.05x</td>
<td>3.16x</td>
</tr>
<tr>
<td>CIFAR Non-I.I.D</td>
<td>48.2</td>
<td>47.2</td>
<td>43.9</td>
<td>48.0</td>
</tr>
</tbody>
</table>

While producing higher accuracy, DGA also demonstrates **faster training speed** as it fully covers communication with computation.
DGA Improves the Accuracy

<table>
<thead>
<tr>
<th>Paritions</th>
<th>FedAvg(k=5)</th>
<th>FedAvg(k=10)</th>
<th>FedAvg(k=20)</th>
<th>DGA(K=5,D=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIFAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.I.D</td>
<td>88.7</td>
<td>88.5</td>
<td>88.1</td>
<td>88.6</td>
</tr>
<tr>
<td></td>
<td>1.0x</td>
<td>1.51x</td>
<td>2.05x</td>
<td>3.16x</td>
</tr>
<tr>
<td>Non-I.I.D</td>
<td>48.2</td>
<td>47.2</td>
<td>43.9</td>
<td>48.0</td>
</tr>
<tr>
<td>ImageNet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.I.D</td>
<td>76.6</td>
<td>76.5</td>
<td>76.2</td>
<td>76.4</td>
</tr>
<tr>
<td></td>
<td>1.0x</td>
<td>1.43x</td>
<td>1.81x</td>
<td>2.55x</td>
</tr>
<tr>
<td>Non-I.I.D</td>
<td>55.4</td>
<td>52.5</td>
<td>48.6</td>
<td>54.9</td>
</tr>
</tbody>
</table>
DGA Improves the Accuracy

<table>
<thead>
<tr>
<th>Paritions</th>
<th>FedAvg(k=5)</th>
<th>FedAvg(k=10)</th>
<th>FedAvg(k=20)</th>
<th>DGA(K=5,D=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIFAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.I.D</td>
<td>88.7</td>
<td>88.5</td>
<td>88.1</td>
<td>88.6</td>
</tr>
<tr>
<td>Non-I.I.D</td>
<td>48.2</td>
<td>47.2</td>
<td>43.9</td>
<td>48.0</td>
</tr>
<tr>
<td>ImageNet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.I.D</td>
<td>76.6</td>
<td>76.5</td>
<td>76.2</td>
<td>76.4</td>
</tr>
<tr>
<td>Non-I.I.D</td>
<td>55.4</td>
<td>52.5</td>
<td>48.6</td>
<td>54.9</td>
</tr>
<tr>
<td>Shakespeare</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.I.D</td>
<td>47.6</td>
<td>47.3</td>
<td>47.3</td>
<td>47.1</td>
</tr>
<tr>
<td>Non-I.I.D</td>
<td>36.9</td>
<td>34.3</td>
<td>30.1</td>
<td>36.3</td>
</tr>
</tbody>
</table>
Real-world Benchmark

We build a raspberry pi cluster to simulate real-world federated learning scenarios.

• Device: 8 x Raspberry Pi 4B+ Models
• Device OS: Debian 10
• Router: Netgear R6300v2
• Router OS: OpenWRT
When scaling the training to two devices, the normalized throughput is only 0.6, which is even slower than single device.
Even we set a larger value of K, the scalability is still less than 0.5 and not comparable with training throughput based on in-cluster networks.
Benchmark on Raspberry Pi Farms

Our proposed DGA demonstrates ideal scalability under high-latency network. The speedup on eight-device is about 7.1, which close to what conventional algorithms achieved inside a data center.
We design Delayed Gradient Averaging (DGA) that

• Delays averaging to a later iteration to tolerate high network latency

• New update formula to compensate the accuracy

We evaluate the algorithm’s

• Convergence and accuracy both theoretically and empirically.

• Training throughput under a real-world pi-cluster.